Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Nonstructural carbohydrate (NSC) concentrations might reflect the strategies described in the leaf economic spectrum (LES) due to their dependence on photosynthesis and respiration.We examined if NSC concentrations correlate with leaf structure, chemistry, and physiology traits for 114 species from 19 sites and 5 biomes around the globe.Total leaf NSC concentrations varied greatly from 16 to 199 mg g−1dry mass and were mostly independent of leaf gas exchange and the LES traits. By contrast, leaf NSC residence time was shorter in species with higher rates of photosynthesis, following the fast‐slow strategies in the LES. An average leaf held an amount of NSCs that could sustain one night of leaf respiration and could be replenished in just a few hours of photosynthesis under saturating light, indicating that most daily carbon gain is exported.Our results suggest that NSC export is clearly linked to the economics of return on resource investment.more » « lessFree, publicly-accessible full text available May 1, 2026
-
ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract Background and AimsTropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three times greater for the tropics than other for ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink. MethodsWe used a meta-analytic approach, focusing on tropical photosynthetic temperature responses, to address this knowledge gap. Our dataset, gleaned from 18 independent studies, included leaf-level light-saturated photosynthetic (Asat) temperature responses from 108 woody species, with additional temperature parameters (35 species) and rates (250 species) of both maximum rates of electron transport (Jmax) and Rubisco carboxylation (Vcmax). We investigated how these parameters responded to mean annual temperature (MAT), temperature variability, aridity and elevation, as well as also how responses differed among successional strategy, leaf habit and light environment. Key ResultsOptimum temperatures for Asat (ToptA) and Jmax (ToptJ) increased with MAT but not for Vcmax (ToptV). Although photosynthetic rates were higher for ‘light’ than ‘shaded’ leaves, light conditions did not generate differences in temperature response parameters. ToptA did not differ with successional strategy, but early successional species had ~4 °C wider thermal niches than mid/late species. Semi-deciduous species had ~1 °C higher ToptA than broadleaf evergreen species. Most global modelling efforts consider all tropical forests as a single ‘broadleaf evergreen’ functional type, but our data show that tropical species with different leaf habits display distinct temperature responses that should be included in modelling efforts. ConclusionsThis novel research will inform modelling efforts to quantify tropical ecosystem carbon cycling and provide more accurate representations of how these key ecosystems will respond to altered temperature patterns in the face of climate warming.more » « lessFree, publicly-accessible full text available December 12, 2025
-
Summary statement Legacy of severe drought enhanced salinity tolerance in Aegiceras corniculatum and Rhizophora stylosa through coordinated adjustments in leaf turgor loss points and cell wall elasticity. Nevertheless, declining turgor safety margins may increase the vulnerability of mangroves to drought.more » « less
-
Abstract. Extreme drought events in Amazon forests are expected to become more frequent and more intense with climate change, threatening ecosystem function and carbon balance. Yet large uncertainties exist on the resilience of this ecosystem to drought. A better quantification of tree hydraulics and mortality processes is needed to anticipate future drought effects on Amazon forests. Most state-of-the-art dynamic global vegetation models are relatively poor in their mechanistic description of these complex processes. Here, we implement a mechanistic plant hydraulic module within the ORCHIDEE-CAN-NHA r7236 land surface model to simulate the percentage loss of conductance (PLC) and changes in water storage among organs via a representation of the water potentials and vertical water flows along the continuum from soil to roots, stems and leaves. The model was evaluated against observed seasonal variability in stand-scale sap flow, soil moisture and productivity under both control and drought setups at the Caxiuanã throughfall exclusion field experiment in eastern Amazonia between 2001 and 2008. A relationship between PLC and tree mortality is built in the model from two empirical parameters, the cumulated duration of drought exposure that triggers mortality, and the mortality fraction in each day exceeding the exposure. Our model captures the large biomass drop in the year 2005 observed 4 years after throughfall reduction, and produces comparable annual tree mortality rates with observation over the study period. Our hydraulic architecture module provides promising avenues for future research in assimilating experimental data to parameterize mortality due to drought-induced xylem dysfunction. We also highlight that species-based (isohydric or anisohydric) hydraulic traits should be further tested to generalize the model performance in predicting the drought risks.more » « less
-
Elevation gradients present enigmatic diversity patterns, with trends often dependent on the dimension of diversity considered. However, focus is often on patterns of taxonomic diversity and interactions between diversity gradients and evolutionary factors, such as lineage age, are poorly understood. We combine forest census data with a genus level phylogeny representing tree ferns, gymnosperms, angiosperms, and an evolutionary depth of 382 million years, to investigate taxonomic and evolutionary diversity patterns across a long tropical montane forest elevation gradient on the Amazonian flank of the Peruvian Andes. We find that evolutionary diversity peaks at mid-elevations and contrasts with taxonomic richness, which is invariant from low to mid-elevation, but then decreases with elevation. We suggest that this trend interacts with variation in the evolutionary ages of lineages across elevation, with contrasting distribution trends between younger and older lineages. For example, while 53% of young lineages (originated by 10 million years ago) occur only below ∼1,750 m asl, just 13% of old lineages (originated by 110 million years ago) are restricted to below ∼1,750 m asl. Overall our results support an Environmental Crossroads hypothesis, whereby a mid-gradient mingling of distinct floras creates an evolutionary diversity in mid-elevation Andean forests that rivals that of the Amazonian lowlands.more » « less
An official website of the United States government
